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a b s t r a c t

In this paper a novel kinematic model is proposed where the transformation between the robot posture
and the system state is bijective. A nonlinear control law is constructed in the Lyapunov stability analysis
framework. This control law achieves a global asymptotic stability of the system based on the usual
requirements for reference velocities. The control law is extensively analysed and compared to some
existing, globally stable control laws.
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1. Introduction

The problem of the control of nonholonomic systems has at-
tracted numerous investigations in the past. A thoroughly stud-
ied case, with great practical significance, is the wheeled mobile
robot with a kinematic model similar to a unicycle [1]. The dif-
ferentially driven mobile robots that are very common in practical
applications also have the same kinematic model. Although many
researchers coped with the more difficult problem of stabilising
dynamicmodels for different types ofmobile robots [2,3], the basic
limitations of mobile robot control still come from their kinematic
model, as shown in [4–6]. Kinematic control laws are also very im-
portant from the practical point of view, since the wheel-velocity
control is often implemented locally on simple, micro-controller-
based hardware, while the velocity command comes from high-
level hardware that also provides the current control objective.

Traditionally, the problem of mobile robot control has been
approached by point stabilisation [7] or by redefining the problem
as a tracking control one [8]. There are also some approaches
that tackle both problems simultaneously [9]. We believe that the
tracking control approach is somewhat more appropriate, since
the nonholonomic constraints and other control goals (obstacle
avoidance, minimum travel time, minimum fuel consumption) are
implicitly included in the path-planning procedure [10–12]. It is
also easier to extend this approach to more complex schemes
such as the control of mobile robot platoons [13]. Many control
algorithms were proposed in the path-tracking framework, such
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as PID [14], Lyapunov-based nonlinear controllers [15], adaptive
controllers [2], model-based predictive controllers [16], fuzzy
controllers [17–19], fuzzy neural networks [20], etc. Very often
the fuzzy controllers take care of the high-level control [21] while
in some cases they are implemented on chips or other industrial
hardware [22,23]. Some approaches only guarantee local stability,
while others also ensure global stability and global convergence
under certain assumptions.

It is very important to find a (kinematic) control law that pro-
duces a smooth control signal. If this is not the case, the implemen-
tation on the dynamic model becomes impossible. Unfortunately,
due to a discontinuity in the orientation error of±180°, quite often
there is also a discontinuity in the angular-velocity command. This
comes from the fact that the classical kinematic model is continu-
ous with respect to orientation (there are no jumps at ±π ), while
in implementation the orientation is often mapped to the (−π, π]

interval. In this paper a novel kinematic model is proposed that
overcomes this difficulty, although it is of a higher order. A control
law that achieves global asymptotic convergence to a predesigned
path under some mild conditions is also proposed and compared
to existing control laws.

The problem statement is given in Section 2. The new kinematic
model and the corresponding error model are developed in Sec-
tion 3. The Lyapunov control design is described in Section 4. In
Section 5, several control algorithms are compared. The conclu-
sions are stated in Section 6.

2. Problem statement

Assume a two-wheeled, differentially driven, mobile robot like
the one depicted in Fig. 1, where (x, y) is the wheel-axis-centre
position and θ is the robot orientation. The kinematic motion
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Fig. 1. Two-wheeled, differentially driven, mobile robot.

equations of such a mobile robot are equivalent to those of a
unicycle. Robots with such an architecture have a nonholonomic
constraint of the form:
− sin θ(t) cos θ(t)

 [ẋ(t)
ẏ(t)

]
= 0 (1)

resulting from the assumption that the robot cannot move in
the lateral direction. Only the first-order kinematic model of the
system will be treated in this paper:

q̇ =

ẋ
ẏ
θ̇

 =

cos θ 0
sin θ 0
0 1

[
v
w

]
(2)

where qT (t) =

x(t) y(t) θ(t)


is the vector of generalised

coordinates, while v and w are the translational and the angular
velocities, respectively, of the system in Fig. 1. The velocities of the
right and the left wheels of the robot are vR = v +

wB
2 and vL =

v−
wB
2 , respectively, where B is the robot inter-wheel distance. The

control design goal is to follow the virtual robot or the reference
trajectory, defined by

qTr (t) =

xr(t) yr(t) θr(t)


(3)

where qr(t) is a priori known and smooth. It is very easy to show
that the system (2) is flat [24], with the flat outputs being x and
y. Consequently, (3) can be produced by the uniformly continuous
control inputs vr(t) and wr(t) in the absence of initial conditions,
parasitic dynamics and external disturbances. The goal is to design
a feedback controller to achieve the tracking and the tracking
should be asymptotic under the persistency of excitation (PE)
through vr(t) or wr(t).

3. Error model of the mobile robot kinematics

The posture error is not given in the global coordinate system,
but rather as an error in the local coordinate system of the robot:
ex gives the error in the direction of driving, ey gives the error
in the lateral direction, and eθ gives the error in the orientation.
The posture error e =


ex ey eθ

T is determined using the

actual posture q =

x y θ

Tand the reference posture qr =
xr yr θr

T :ex
ey
eθ


=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


(qr − q) . (4)

3.1. Third-order error model of the system

From (2) and (4) and assuming that the virtual robot has a
kinematic model similar to (2), the posture-error model can be
written as follows:
ėx
ėy
ėθ


=

cos eθ 0
sin eθ 0
0 1

[
vr
wr

]
+


−1 ey
0 −ex
0 −1


u. (5)

The transformation (4) is theoretically imposed by the group
operation, noting that the model (2) is a system in the Lie group
SE(2) [5]. The approach itself was adopted in [8], where the authors
also proposed PID control for the stabilisation of the robot at the
reference posture. Later, many authors used the error model (5)
for the tracking control design.

Very often, e.g., [14], the following control u is used to solve the
tracking problem:

u =

[
v
w

]
=

[
vr cos eθ + vb

wr + wb

]
(6)

where uT
b =


vb wb


is the feedback signal to be determined

later. Inserting the control (6) into (5), the resulting model is given
by:

ėx = wrey − vb + eywb

ėy = −wrex + vr sin eθ − exwb

ėθ = −wb.

(7)

3.2. Fourth-order error model of the system

The problem of using the third-order error model presented
in the previous section is that the transformation between the
robot posture and the error model is not bijective. This can be
observed from the fact that any error state


ex ey eθ + 2kπ

T
for fixed ex, ey, eθ , and for arbitrary k ∈ Z corresponds to
the same robot posture. To say this more clearly: If we take
any robot posture and rotate the robot for any multiple of
360°, the same robot posture is obtained (the sensors would not
observe any difference between the two postures). Consequently,
by just observing the robot posture it is impossible to deduce
the orientation error. In practical control implementations the
orientation error is often mapped onto the interval (−π, π] to
somehow overcome the abovementioned bijectivity problem. The
side effect of this is that the (angular-velocity) control signal
often expresses discontinuity when the orientation error of ±π is
crossed (thiswill be shown in the examples at the endof the paper).
Discontinuous velocity control signals are even more problematic
because of the implementation on the real dynamic system.

The bijectivity between the robot posture and the states of the
system should be therefore reflected in the kinematic model of
the system and also in the error model of the system. This can be
achieved by increasing the order of the system to 4. The variable
θ(t) from the original kinematic model (2) is exchanged by two
new variables s(t) = sin(θ(t)) and c(t) = cos(θ(t)). Their
derivatives are:

ṡ(t) = cos(θ(t))θ̇(t) = c(t)w(t)

ċ(t) = − sin(θ(t))θ̇(t) = −s(t)w(t).
(8)

The new kinematic model is then obtained:

q̇ =

ẋ
ẏ
ṡ
ċ

 =

c 0
s 0
0 c
0 −s

[v
w

]
. (9)

The new error states are defined as

ex = c(xr − x) + s(yr − y)
ey = −s(xr − x) + c(yr − y)
es = sin(θr − θ) = src − cr s
ecos = cos(θr − θ) = crc + sr s.

(10)
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After the differentiation of Eq. (10) and some manipulations, the
following system is obtained.

ėx = vrecos − v + eyw
ėy = vres − exw
ės = wrecos − ecosw
ėcos = −wres + esw.

(11)

Like in (6), v = vrecos + vb and w = wr + wb will be used in
the control law. The control goal is to drive ex, ey, and es to 0. The
variable ecos is obtained as the cosine of the error in the orientation
and should be driven to 1. This is why a new error will be defined
as ec = ecos − 1 and the final error model of the system is now:

ėx = wrey − vb + eywb

ėy = −wrex + vres − exwb

ės = −ecwb − wb

ėc = eswb.

(12)

4. Lyapunov-based control design

A controller that achieves asymptotic stability of the error
model (12) will be developed based on a Lyapunov approach. A
very straightforward idea would be to use a Lyapunov function of
the type

V0 =
k
2


e2x + e2y


+

1
2


e2s + e2c


(13)

however, a slightly more complex function will be proposed
here, which also includes the function (13) as a special case. The
following Lyapunov-function candidate is proposed to achieve the
control goal:

V =
k
2


e2x + e2y


+

1
2

1 +

ec
a

 e2s + e2c


(14)

where k > 0 and a > 2 are constants. Note that the range of the
function ec = cos(θr − θ) − 1 is [−2, 0], and therefore

0 <
a − 2
a

≤ 1 +
ec
a

≤ 1

1 ≤
1

1 +
ec
a

≤
a

a − 2
.

(15)

Due to (15) the function V in (14) is lower-bounded by the function
V0 in (13). Since the latter is of class K, V fulfils the conditions for
the Lyapunov function. The role of


1 +

ec
a


will be explained later

on. The function V can be simplified by using the following:

e2s + e2c = e2s + (ecos − 1)2 = 2 − 2ecos = −2ec . (16)
Taking into account the equations of the error model (12) and (16),
the derivative of V in (14) is:

V̇ = −kexvb + kvreyes +
1

2

1 +

ec
a

 (−2eswb) +
−

1
a eswb(−2ec)

2

1 +

ec
a

2
= −kexvb + es


kvrey −

wb
1 +

ec
a

2


. (17)

In order to make V̇ negative semi-definite, the following control
law is proposed:

vb = kxex

wb = kvrey

1 +

ec
a

2
+ kses

[
1 +

ec
a

2]n (18)

where kx(t) and ks(t) are positive functions, while n ∈ Z. For
practical reasons n is a small number (usually −2,−1, 0, 1 or 2
are good choices). By taking into account the control law (18), the
function V̇ becomes:

V̇ = −kkxe2x − kse2s

[
1 +

ec
a

2]n−1

. (19)

Two very well-known lemmas will be used in the proof of a
theorem in this section. The first one is Barbălat’s lemma and the
other one is a derivation of Barbălat’s lemma. Both lemmas are
taken from [25] and are given below for the sake of completeness.

Lemma 1 (Barbălat’s Lemma). If limt→∞

 t
0 f (τ )dτ exists and is

finite, and f (t) is a uniformly continuous function, then limt→∞ f (t)
= 0.

Lemma 2. If f , ḟ ∈ L∞ and f ∈ Lp for some p ∈ [1, ∞), then
f (t) → 0 as t → ∞.

In Lemma 2 the Lp norm of a function f (t) is used. It is defined
as:

‖f ‖p =

∫
∞

0
|f (τ )|p dτ

1/p

(20)

where |·| denotes the vector (scalar) length. If the above integral
exists (is finite), the function f (t) is said to belong toLp. Limiting p
towards infinity provides a very important class of functions L∞—
bounded functions.

Theorem 1. If the control law (18) is applied to the system (12)where
k is a positive constant, a > 2 is a constant, kx and ks are
positive bounded functions, and the reference velocities vr and wr are
bounded, then the tracking errors ex, es, and ec converge to 0. The
convergence of ey to 0 is guaranteed, provided that at least one of
the two conditions is met:
1. vr is uniformly continuous and does not go to 0 as t → ∞, while

ks is uniformly continuous,
2. wr is uniformly continuous and does not go to 0 as t → ∞, while

vr , kx, and ks are uniformly continuous.
Proof. It follows from (19) that V̇ ≤ 0, and therefore the Lyapunov
function is non-increasing. Consequently, the following can be
concluded:

ex, ey, es, ec ∈ L∞. (21)

Based on (21), it follows from (18) that the control signals are
bounded, and from (12) that the derivatives of the errors are
bounded:

vb, wb, ėx, ėy, ės, ėc ∈ L∞ (22)

where we also took into account that vr , wr , k, kx, ks, and
1 +

ec
a

2n are bounded. It follows from Eqs. (21) and (22) that
ex, ey, es, and ec are uniformly continuous (note that the easiest
way to check the uniform continuity of f (t) on [0, ∞) is to see if
f , ḟ ∈ L∞).

In order to show the asymptotic stability of the system, let us
first calculate the following integral:∫

∞

0
V̇dt = V (∞) − V (0)

= −

∫
∞

0
kkxe2xdt −

∫
∞

0
kse2s

[
1 +

ec
a

2]n−1

dt (23)

where the notation V (t) is used although V does not depend on
t explicitly. Since V is a positive definite function, the following
inequality holds:

V (0) ≥

∫
∞

0
kkxe2xdt +

∫
∞

0
kse2s

[
1 +

ec
a

2]n−1

dt

≥ kkx

∫
∞

0
e2xdt + ksL

∫
∞

0
e2s dt (24)
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where the lower bounds of the functions kx(t), ks(t), and
1 +

ec (t)
a

2(n−1)
are introduced

0 < kx ≤ kx(t) t ∈ R
0 < ks ≤ ks(t) t ∈ R

0 < L ≤


1 +

ec(t)
a

2(n−1)

t ∈ R

(25)

and two cases can be distinguished to determine the value of L due
to (15):

L =


1 n ≤ 1
a − 2
a

2(n−1)

n > 1.
(26)

It follows from (24) that ex, es ∈ L2. Applying Lemma 2, the
convergence of ex(t) and es(t) to 0 follows immediately. When
es is 0, ec can be either 0 or −2 since es and (ec + 1) are the
sine and the cosine, respectively, of the same argument. Due to
es → 0, it follows from (12) that ėc → 0 and consequently the
limit limt→∞ ec(t) exists and is either 0 or −2.

Until now we only established the convergence of ex(t) and
es(t) to 0, while ec(t) was shown to converge either to 0 or to
−2. To show the convergence of ey(t) to 0, at least one of the
conditions 1 or 2 of Theorem 1 have to be fulfilled. Let us first
analyse the condition 1. Applying Lemma 1 to ės(t) ensures that
limt→∞ ės(t) = 0 if limt→∞ es(t) exists and is finite (which has
already been proven) and ės(t) is uniformly continuous. The latter
is true (see (12)) if (ec+1)wb is uniformly continuous. It has already
been shown that ec is uniformly continuous. The feedback control
for the angular velocity wb defined in (18) is uniformly continuous
since ks and vr are uniformly continuous from the assumption in
condition 1 of the theorem. The statement limt→∞ ės(t) = 0,
which is identical to

lim
t→∞


− (ec(t) + 1) wb(t)


= 0 (27)

has therefore been proven. Since (ec(t) + 1) converges to 1 or to
−1, the following can be concluded from (18):

lim
t→∞

wb = lim
t→∞


kvrey


1 +

ec
a

2
+ kses

[
1 +

ec
a

2]n
= 0. (28)

The factor

1 +

ec
a


can converge either to 1 or to


1 −

2
a


, but is

always strictly positive and bounded. Since the same holds for ks,
while it was shown that es converges to 0, the whole second term
of wb in Eq. (28) also converges to 0. In the first term k is a finite
constant,


1 +

ec
a

2 is bounded and strictly positive, while vr is also
bounded and does not diminish as t → ∞ due to the assumption
in the condition 1. Consequently, the convergence of ey to 0 follows.

For the second case (condition 2) Barbălat’s lemma (Lemma 1)
is applied to ėx in Eq. (12) after inserting the control law for vb (18):

ėx = wrey − kxex + eywb. (29)

In order to show that limt→∞ ėx = 0 we again have to guarantee
that all the signals on the right-hand side of Eq. (29) are uniformly
continuous. We have seen that ex and ey are uniformly continuous,
wr and kx are uniformly continuous from the assumption of the
condition 2, while wb is uniformly continuous if ks and vr are
uniformly continuous. The latter two conditions also guarantee
that limt→∞ wb = 0 as shown before. Since ex and wb converge
to 0 while kx and ey are bounded, the last two terms in Eq. (29) go
to 0 as t goes to infinity. Consequently, the product wrey also goes
to 0. Since wr does not go to 0, ey has to go to 0.
It is somehowmore difficult to prove the convergence of ec to 0.
However, it has already been shown that ec converges either to 0 or
to −2, and it is easy to show that ec will converge to 0 if the initial
condition of the error vector is in the vicinity of the origin or the
design parameter a is sufficiently close to 2. The error ec converges
to 0 asymptotically if one of the following conditions is satisfied:
• V (0) ≤ 2, or
• V (0) > 2 and a < 2V (0)

V (0)−2 .

To prove this statement, let us calculate the value of the Lyapunov
function V in e−2 =


0 0 0 −2

T :
V−2 = V |e=e−2 =

1
2

1 +

ec
a

 e2c

ec=−2

=
2a

a − 2
> 2. (30)

It is easy to show that V (0) < V−2 if one of the above two
conditions is satisfied. Among all the points that share the same
ec = −2, e−2 is the point with the lowest V . Since V is
a monotonically non-increasing function, the system can never
reach any point with ec = −2. Thus, it is only possible that ec
converges to 0.

Now let us assume that ec is in the vicinity of−2. Upon inserting
wb from Eq. (18), ėc in Eq. (12) becomes:

ėc = eswb = kvreyes

1 +

ec
a

2
+ kse2s


1 +

ec
a

2n
. (31)

The second term in Eq. (31) is always positive. The error ec will
increase and thus be repelled from ec = −2 if the product vreyes is
positive. If this is not satisfied, then ec will still increase if

vrey
 is

small enough (the second term is dominant in Eq. (31)):vrey
 <

ks
k

|es|

1 +

ec
a

2(n−1)
⇒ ėc > 0. (32)

Even if this is not the case, the analysis in the vicinity of ec = −2
will show that this equilibrium point is repelling. The errors ex and
es always converge to 0 and we can say that after some time they
belong to O(ε) where ε is sufficiently small. It is easy to conclude
from (12) that the derivatives of the errors then become:

ėy = O(ε)

ės = (−ec − 1)kvrey

1 +

ec
a

2
+ O(ε).

(33)

Now we are interested in the derivative of vreyes:

d
dt

(vreyes) = v̇reyes + vr ėyes + vreyės

= O(ε) + O(ε2) + (−ec − 1)kv2
r e

2
y


1 +

ec
a

2
+ O(ε). (34)

We can see that in the vicinity of ec = −2 the dominant term in
Eq. (34) is always positive and ėc in (31) also eventually becomes
positive. Even if for a short time the error ec is approaching −2, it
is always repelled after that. Note that this happens when es and
vrey are of the opposite sign (if they are of the same sign ec always
increases). From (12) it can be concluded that es will then move in
the direction of changing its sign. But it has to cross es = 0when ec
becomes −2. This is why the error ec actually crosses ec = −2 but
it is immediately repelled from it. The solution ec = −2 is therefore
an unstable equilibrium point.

Since ec cannot be attracted to −2 for a longer time, it has to
eventually be driven to 0 because this is the only alternative. �

5. Comparison of different control laws

The proposed method has been extensively tested and com-
pared to the existing methods from the literature. The first one
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is from [14] and the other one is inspired by Samson’s work [15].
These algorithms were chosen because they were both designed
using Lyapunov stability theory. The Lyapunov functions used
therein have the same limit around the zero error in orientation
(eθ = 0). The control law proposed in [14] is:

vb = kxex
wb = kvrey + ks sin eθ .

(35)

Actually, there was also a third factor vr in the second term of
wb which is not normally used in the recent papers that cite this
approach since additional assumptions about vr are needed. On
the other hand, vr can also be included in ks if the requirements
are met. Note that the control law (35) can be easily developed if
the most straightforward Lyapunov function V0 from (13) is used
in the controller design procedure. Note also that the control law
(35) is a special case of (18) when a limits to infinity.

The control law due to Samson is:

vb = kxex

wb = kvrey
sin eθ

eθ

+ kseθ .
(36)

In our simulation experiments the orientation error eθ in (36) was
always mapped to the interval (−π, π] to make the comparison
fair. It is easy to see that all three control laws given in Eqs. (18),
(35) and (36) that will be compared in the paper have the same
limit around eθ = 0 and it is therefore fair to use the same control
gains—in our case we shall use k = 10, kx = 10, and ks = 10.

The form of the control laws suggests that the role of vb
is always the reduction of ex, while wb needs to cater for the
remaining two errors. A very simplified explanation is that the first
term in wb takes care of the lateral error, while the second term is
responsible for the orientation error. In reality, the problems are
much more complicated, due to the nonholonomic nature of the
system. Nevertheless, we can still be sure of certain facts:
• The feedback vb is the same in all three control laws that have

been compared, and therefore we cannot expect any drastic
differences in performance.

• The control laws (18) and (35) are continuous with respect to
the orientation error (at the orientation error of ±π ) while
the control law (36) does not share this property. This is a
problem of the latter approach since the implementation of
the discontinuous control law on a dynamic model becomes
questionable.

• Let us denote the ‘‘gain’’ from ey to wb by gy(t) , |wb(t)|/
|ey(t)||eθ (t)=0. Additionally, the superscripts p, k, and s denote
the proposed control law (18), Kanayama’s control law (35),
and Samson’s control law (36), respectively. Among the three
control laws compared, gk

y is always the highest. It is easy to
show that if a ≥ 6, gp

y is always larger than g s
y. If 2 < a <

6, g s
y > gp

y when eθ is small, and g s
y < gp

y when eθ is large.
• Let us denote the ‘‘gain’’ from eθ to wb by gθ (t) , |wb(t)|/

|eθ (t)||ey(t)=0. The superscripts are the same as above. If n >

0, gp
θ < gk

θ < g s
θ . If n = 0, gp

θ = gk
θ < g s

θ . If n is negative, then
gk
θ is the lowest. The comparison between Samson’s control

law and the proposed one depends on the choice of design
parameters. If a ≤ 6|n|, gp

θ < g s
θ . If a > 6|n|, the comparison

also depends on the orientation error: gp
θ > g s

θ for small eθ and
gp
θ < g s

θ for large eθ .

If we try to summarise the above analysiswe can see that for n > 0,
the proposed control law always has the lowest gain gθ , while
either Samson’s law or the proposed one have the lowest gy gain.
This means that we can expect lower control effort from these two
laws, while Kanayama’s law will exert more control action.

An extensive simulation study was performed to compare
all the approaches under the same circumstances. The reference
Table 1
Cost functions of individual control laws.

i C
i
e C

i
v C

i
w N i

π

1 1.4894 1.0186 1.8870 98
2 1.3693 1.0046 1.7706 98
3 1.0742 1.0628 1.7594 483
4 1.4426 1.0133 1.8355 98
5 1.3336 1.0066 1.6903 154
6 1.0599 1.0667 1.7651 500
7 1.4126 1.0184 1.5696 98
8 1.2591 1.0217 1.5912 265
9 1.0471 1.0696 1.7655 508

10 4.5709 1.2081 1 98
11 1.0881 1.0773 1.5766 499
12 1.0345 1.0725 1.7658 516
13 7.3737 1.5574 1.1021 98
14 1 1.1319 1.5885 758
15 1.0226 1.0754 1.7669 524
16 1.3591 1 1.7534 0
17 1.0328 1.0724 1.7763 517

trajectory is the same in all the simulation runs:

xr(t) = cos(ω0t)
yr(t) = sin(2ω0t)

(37)

with ω0 = 0.34. The simulation run always started at t = 0
and finished at t =

2π
ω0

. The control signals vb and wb were
saturated to ±10. The simulation experiment was conducted with
different initial conditions. The possible initial conditions of the
mobile robot were

ex(0), ey(0) ∈ Ixy = {−2, −1.5, −1, −0.7, −0.5,
−0.3, −0.1, 0.1, 0.3, 0.5, 0.7, 1, 1.5, 2}

eθ (0) ∈ Iθ =


lπ
12

 l = −11, −10, . . . , 12


.

(38)

For each simulation run the following cost functionwas calculated:

icxyθe =

∫ 2π
ω0

0

[
k
2
e2x(t) +

k
2
e2y(t) +

1
2
e2θ (t)

]
dt (39)

where x, y, and θ denote the respective initial conditions, while i
denotes the index of the control law. Seventeen different control
laws were tested: Eq. (35) corresponds to i = 17, Eq. (36)
corresponds to i = 16, and Eq. (18) corresponds to i =

1, . . . , 15, where 15 variations with n ∈ {−2, −1, 0, 1, 2} and
a ∈ {2.1, 7100} were used: n = −2, a = 2.1 correspond to i =

1, n = −2, a = 7 correspond to i = 2, and so on. For each variation
of the initial conditions in (38), seventeen simulation experiments
were conducted with seventeen different control laws, meaning
that the total number of simulation runs was 14 × 14 × 24 × 17.

Note that the integral of the Lyapunov function used for the
development of (36) was used (for small errors in the orientation
all three Lyapunov functions have the same limit) for the cost
function of an individual simulation run (39). The overall cost
function of a certain control law i was simply the sum of all the
individual cost functions:

C i
e =

−
x∈Ixy

−
y∈Ixy

−
θ∈Iθ

icxyθe


. (40)

Whenever the performance of a control law is discussed, it is
necessary to check for the control effort. Analogously with Eqs.
(39) and (40), C i

v and C i
w are defined as the sums of the integrals

of v2
b and w2

b , respectively. Table 1 shows the cost functions C
i
e, C

i
v ,

and C
i
w (these are obtained by normalising the respective cost

functions with the best one in the column) for all 17 control laws.
The smallest total error C i

e (or C
i
e) is achieved by the proposed

control law with n = 2 and a = 7 (i = 14), followed closely
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Table 2
The columns show the ranking (according to lC i

e) of the control laws for all the simulation runs with eθ (0) = lπ/12 (the first row shows the index i of the best control law).

l =

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 1 6 17 15 14 14 14 14 14 14 14
4 4 17 9 17 15 11 15 15 15 13 13
2 17 9 12 12 11 15 10 17 17 15 15

16 2 3 6 9 12 12 11 12 12 17 17
3 6 12 15 6 17 17 12 11 9 12 12
5 3 15 3 11 9 9 17 9 11 9 9

17 9 1 11 3 6 6 9 10 6 11 11
6 5 4 1 14 3 3 6 6 3 6 6
9 12 8 4 1 7 10 3 3 13 3 3

12 15 7 8 4 8 8 8 8 10 10 10
15 16 2 7 7 16 7 7 5 8 8 8
8 7 16 2 2 5 5 5 13 5 5 5

11 8 5 16 16 2 16 16 16 16 16 16
14 11 11 5 5 4 2 2 7 2 2 2
7 14 14 14 8 1 4 4 2 7 7 7

10 10 10 10 10 10 1 1 4 4 4 4
13 13 13 13 13 13 13 13 1 1 1 1

l =

0 1 2 3 4 5 6 7 8 9 10 11

14 14 14 14 14 14 14 14 15 17 6 1
13 13 15 15 15 10 11 11 17 9 3 4
15 15 17 17 12 15 15 15 12 12 17 2
17 17 12 12 17 11 12 12 9 6 9 16
12 12 9 9 10 12 17 17 6 15 12 5
9 9 6 11 11 17 9 9 3 3 1 17

11 11 11 6 9 9 6 6 11 11 15 3
6 6 3 3 6 6 10 3 1 1 4 6
3 3 10 10 3 3 3 7 7 4 7 9

10 10 13 8 8 8 8 8 4 7 2 12
8 8 8 5 5 7 7 5 2 8 8 15
5 5 5 13 7 5 5 16 16 2 5 7

16 16 16 16 16 16 16 2 5 16 16 8
2 2 2 2 2 2 2 4 8 5 11 11
7 7 7 7 4 4 4 1 14 14 14 14
4 4 4 4 13 1 1 10 10 10 10 10
1 1 1 1 1 13 13 13 13 13 13 13
by the combination n = 2 and a = 100 (i = 15), Nakayama’s law
(i = 17), and the combination n = 1 and a = 100 (i = 12). We
can also see that the control laws with a = 2.1, n = 1 (i = 10)
and especially with a = 2.1, n = 2 (i = 13) showed really bad
results. The problem lies in the fact that in these cases the control
wb is practically switched off when the orientation error is large.
The convergence is therefore very slow. This is why the control
effort C

i
w is so low in these two cases. Due to the slow convergence

in these two cases, these approaches are also the worst when only
C
i
v is observed. In other cases, no big differences among C

i
v can be

found, as expected. Perhaps we should note that the control law
with the best total error (i = 14) is slightly worse in this respect
than the others. When comparing C

i
w and leaving out i = 10 and

i = 13, which show very bad performance, the lowest overall
control effort is connected with the proposed control laws with
n = 0. If we were to choose the best control law, then we would
probably select the onewith i = 15,which shows very good overall
performance. Kanayama’s control law is very close while Samson’s
results are not so good (the only exception is the control effort for
the linear velocity, but even here the differences are small). The
last column in Table 1 shows the total number of crossings of the
±180° orientation error. It is interesting to note that good overall
performance is highly correlated with a large number of these
crossings. It is obviously often advantageous to try to minimise
the orientation error even though, for a short period of time, the
orientation error is rising. Samson’s control law never did this and
yet its performance is bad.

Table 1 shows the average cost functions, but it is obvious
that all the control laws behave quite differently when exposed to
different initial conditions (especially in orientation). To illustrate
this, the cost function C i

e was computed for each initial condition
in orientation separately:

lC i
e =

−
x∈Ixy,y∈Ixy,θ=lπ/12

icxyθe


. (41)

To reduce the level of information, only the rankings with respect
to l are shown in Table 2. One can notice immediately that for
low orientation errors the high values of n are good, while for
large initial orientation errors the negative values of n are better.
The explanation is very simple. When n < 0 the second term
in wb is the dominant one. This means that the main control
goal is to reduce the error in the orientation, while the lateral
error is not so important. Such a strategy is useful when the
error in the orientation is high and it is necessary to reduce it
quite quickly (otherwise the error in ey can also increase due to
the interconnection). When, on the other hand, the orientation
error is low, it is more important to cope with ey, which is
a problematic error due to the nonholonomic constraints. We
achieve the emphasis on the regulation of ey when n > 0.

6. Conclusion

In this paper a novel kinematic model is proposed where the
transformation between the robot posture and the system state
is bijective. A novel control law is also proposed. It is designed
within the Lyapunov stability framework. It is proven that the
global asymptotic stability of the system is achieved under some
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verymild conditions if the reference velocities satisfy the condition
of persistent excitation.

An extensive simulation study was performed and the results
of the proposed control law are compared to some control laws
from the literature. The results of the simulation study also suggest
that the parameters n and a of the proposed control law could
be scheduled according to the orientation error. The possibility of
adapting these parameters also exists since n could also be a real
number, but this could lead to stability problems. These aspects
are, therefore, a topic of future research.
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